Les antimonites antiferromagnetiques MnSb₂O₄ et NiSb₂O₄

J. R. GAVARRI

E.R.A. au CNRS n° 456, Ecole Centrale des Arts et Manufactures, 92290 Chatenay-Malabry et Université Paris 13, 93430 Villetaneuse, France

et A. W. HEWAT

I.L.L., Avenue des Martyrs, 156 X, 38042 Grenoble Cedex, France

Received February 14, 1983

Des études par diffraction de neutrons ont été réalisées afin de préciser l'évolution de l'ordre antiferromagnétique des spins dans MnSb₂O₄ et dans NiSb₂O₄. Les températures de Néel valent, respectivement, 60 et 46 K et les effets magnétostrictifs sont interprétés. L'antimonite MnSb₂O₄ a été synthétisé par voie hydrothermale. Les distorsions de nature orthorhombique du réseau sont reliées aux seuls défauts structuraux.

Neutron diffraction has been used to study the variation of antiferromagnetic order in the antimony isomorphous $MnSb_2O_4$ ($T_N \sim 60$ K) and $NiSb_2O_4$ ($T_N \sim 46$ K). The magnetic moments have been related to the Mn^{2+} and Ni^{2+} spins and magnetostrictive effects have been interpreted. The influence of the method of synthesis is mentioned: polycrystalline $MnSb_2O_4$ has been obtained from hydrothermal synthesis. Orthorhombic distortions are not connected with magnetic interactions but with structural defects.

L'étude systématique des antimonites MeSb₂O₄ a été entreprise au laboratoire dans le cadre général des relations entre propriétés thermoélastiques et évolution structurale à basse température (1 à 3). Par diffraction de rayons X et de neutrons, nous avons mis en évidence l'existence de deux types distincts d'ordre antiferromagnétique dans MnSb₂O₄ et NiSb₂O₄, composés isomorphes de $FeSb_2O_4$ (4). Ainsi que nous l'avons déjà montré (1-3), l'analyse de l'évolution structurale à basse température de ces matériaux obtenus essentiellement sous forme polycristalline permet de caractériser certaines de leurs propriétés anisotropes, compte-tenu de leurs conditions de synthèse et d'histoire thermique: en effet, la présence de résidus 0022-4596/83 \$3.00

de synthèse rend souvent aléatoire les mesures physiques macroscopiques.

I. Résultat antérieurs

Dans NiSb₂O₄ et à T = 6 K, les spins des ions Ni²⁺ (S = 1, L = 3) sont tous parallèles à l'intérieur d'une même chaîne d'octaèdres [NiO₆]; les distances Ni-Ni de 3 Å le long de l'axe c peuvent être associées à une interaction d'échange J_1^{H} . Mais entre deux chaînes voisines et dans un même plan (**ab**) ces spins sont antiparallèles, avec des distances Ni-Ni de 5,9 Å environ et une interaction de superéchange J_2^{H} .

Dans $MnSb_2O_4$ les spins des ions Mn^{2+} (S = 5/2, L = 0) appartenant à une même chaîne d'octaèdres sont antiparallèles (in-

Composés	$MnSb_2O_4$	NiSb ₂ O ₄
Constantes	ու սերենքին է։ Մ երդեն է լրանցել է հայ	
élastiques ^a		
$(en \ 10^{-11} \ Pa^{-1})$		
$s_{11} + s_{12}$	1,2	1,23
<i>S</i> ₁₃	-0,40	-0.46
\$ ₃₃	1,5	1,23
Paramètres de		
maille à 300 K		
(en Å)		
a	8,709	8,372
С	5,996	5,907
Synthèse	Mélange de poudres Ampoule scellée sous vide	Mélange du poudres sous flux d'azote
Produits initiaux	$\mathbf{Mn} + \mathbf{Mn}_{3}\mathbf{O}_{4} + 4\mathbf{Sb}_{2}\mathbf{O}_{3}$	$NiO + Sb_2O_3$
Température	480°C	500°C
Temps (synthèse + recuit)	20 jours	4 jours
Résidus	$Mn_{3}O_{4} + Sb_{2}O_{3} (<10\%)$	<2%?
Modes magnétiques	$A_x = S_1(0, \frac{1}{2}, \frac{1}{4}) - S_2(0, \frac{1}{2}, \frac{3}{4})$	$C_{z} = S_{1}(0, \frac{1}{2}, \frac{1}{4}) + S_{2}(0, \frac{1}{2}, \frac{3}{4})$
	$+ S_{3}(\frac{1}{2}, 0, \frac{1}{4}) - S_{4}(\frac{1}{2}, 0, \frac{3}{4})$	$-S_3(\frac{1}{2}, 0, \frac{1}{4}) - S_4(\frac{1}{2}, 0, \frac{3}{4})$
Moments $M(\mu_{\rm B})$		
T = 6 K	$(3,8 0 \ 0) \pm 0,8$	$(0\ 0\ 1,8)\ \pm\ 0,3$
T = 44 K	$(2,45\ 0\ 0)\ \pm\ 0,8$	$(0 \ 0 \ \epsilon?) \pm 0.3$
Anomalies	T = 70 K = 1 dc	Pas d'anomalie
de	$a T = 70 \text{ K}, \alpha_c = \frac{1}{c} \frac{1}{dT}$	
dilatation	est maximum;	
	à $T = 6$ K: $\frac{\Delta c}{c_0} = -0.83.10^{-3}$	
Groupe spatial (cf. (1 à 3))	P4 ₂ /mbc	$P4_2/mbc$ (Pbam)
Distorsions orthorhombiques	Faibles	Faibles
$(a - b)/a_0$ (1 à 3)	(~10 ⁻³)	$(\sim 10^{-3})$
Positions atomiques $(P4_mhc)$:	()	
	$\frac{1}{4} + \frac{5}{5} \frac{5^{3+}}{(h)} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \frac{1}{(h)} + \frac{1}{2} \frac$	$r \stackrel{1}{\to} \Omega(b) r \rightarrow 0$

TABLEAU I

^a Ces constantes sont calculées à partir des seules données d'évolution structurale (dilatations de a et c, facteurs B_{ij} d'agitation thermique anisotrope, etc.: voir la Réf. (2)).

teraction J_1^{\ddagger}) mais à l'intérieur d'un plan (**ab**) et entre chaînes voisines (distances de 6,1 Å, superéchange J_2^{\ddagger}) les spins sont parallèles. Pour cet oxyde, deux températures critiques ont été définies: la température $T_m = 70$ K où $\alpha c = (1/c)(dc/dT)$ est maximum, et la température $T_c = 115 \pm 15$ K. Des effets magnétostrictifs ont été mis en évidence dans MnSb₂O₄ seulement, et le long de l'axe c, jusqu'à cette température T_c . Le Tableau I rassemble les divers résultats antérieurs.

II. Résultats complémentaires

Echantillons

La synthèse hydrothermale des antimonites magnétiques $MeSb_2O_4$ a été entreprise afin d'obtenir des monocristaux de meilleure qualité et de tailles suffisantes (5). Plusieurs essais préliminaires ont con-

duit au choix du mélange $MnO + Sb_2O_3$ chauffé à 510°C pendant 10 jours sous 1000 bar environ. Des cristaux vert clair ont été obtenus sous forme d'aiguilles irrégulières, maclées, ou agglomérées (10 μ m à 2 mm). Les variations de couleur (clair à foncé) sont dues à la phase MnO résiduelle qui recristallise ou apparaît sous forme d'inclusions vert foncé au sein de certains gros cristaux (1 à 2 mm de long) de MnSb₂O₄. Après tamisage et tri magnétique, un mélange des deux seules phases MnO, MnSb₂O₄ est obtenu; la phase orthorhombique résiduelle Sb₂O₃ présente sous forme de cristaux blancs, est alors éliminée. Un broyage modéré permet de bien découpler les réseaux (les compressibilités sont en outre trés différentes: 0,7.10⁻¹¹ Pa⁻¹ pour MnO, 2.10^{-11} Pa⁻¹ environ pour MnSb₂O₄).

L'échantillon de NiSb₂O₄ est celui-là même utilisé lors des études antérieures (1, 2) (préparé sous flux d'azote à partir de NiO + Sb₂O₃).

Diffraction de neutrons

Deux séries de diagrammes de diffraction

de neutrons ont été obtenues sur le diffractomètre D1A de l'Institut Laue Langevin avec une longueur d'onde de 1,909 Å et dans un domaine angulaire de 6 à 66 degrés 2θ . L'évolution des principales raies magnétiques (2) en fonction de la température (2,5) à 80 K) a été analysée, en tenant compte des déterminations antérieures (1) et (2) des divers paramètres cristallographiques et à partir du programme d'affinement Rietveld (6, 7). Les composantes du moment M (Mx, My, Mz) sont ainsi connues avec une bonne précision (écarts-types de 0,10 $\mu_{\rm B}$). L'évolution du moment M(T) permet de définir des températures de Néel (8) extrapolées. Ces températures sont définies à partir des lois de variations empiriques trés différentes, adaptées aux points expérimentaux M(T), indiquées dans le Tableau II: T_N $(MnSb_2O_4) = 60 \pm 5 \text{ K et } T_N (NiSb_2O_4) = 46$ ± 2 K.

Le Tableau II donne les principaux résultats.

Dans $MnSb_2O_4$, les effets magnétostrictifs observés à partir d'une anomalie de dilatation [(2) et Tableau I], fonction de la

$NiSb_2O_4$ $C = S_1 + S_2 - S_3 - S_4$	
<i>I</i> ₁₀₀ 20 345 19 747 18 849 17 503 16 904 6 730 0	$\begin{array}{c} M (\mu_{\rm B}) \\ 2,17 \\ - \\ 2,07 \\ 1,92 \\ 1,83 \\ 1,72 \\ 1,1 \\ 0 \\ - \end{array}$
$M = M_0 \Big(1 - \frac{1}{7} \\ \beta = 0.12 \pm 0.0 \\ M_0 = 2.2 \pm 0.1 \\ T_N = 46 \pm 2 K \\ T = 2.5 K \\ (-1.0 \ 1.0 \ 1.8) $	$\left(\frac{T}{T_N}\right)^{\mu}$
	$M = M_0 \Big(1 - \frac{1}{7} \\ \beta = 0.12 \pm 0.0 \\ M_0 = 2.2 \pm 0.0 \\ T_N = 46 \pm 2 K \\ T = 2.5 K \\ (-1.0 \ 1.0 \ 1.8) \\ 0.10 \\ \end{bmatrix}$

TABLEAU II

^{*a*} Intensité de la bosse diffuse à 45 K: I' = 908. La somme $I_{001} + I'$ correspond à la valeur I_{001} à 4,5 K. L'élargissement à mihauteur de la bosse diffuse correspond à des domaines de 50 Å à T = 45 K. température, semblent directement associés à l'existence simultanée de deux phases ordonnée et désordonnée, lorsque la température augmente de 30 à 80 K. Une bosse apparaît en effet au pied de la raie (001) magnétique dès 30 K: la surface (pic + bosse) reste à peu près constante et la bosse (pic diffus) s'élargit régulièrement lorsque la température augmente; son centroïde est décalé vers les petits angles 2θ . Elle est observable à 80 K, au-delà de T_N ; les zones associées à cette diffusion auraient des dimensions linéaires de 50 Å environ à 45 K, ces dimensions diminuant lorsque la température augmente; l'élargissement du pic diffus est supposé dû au seul effet de taille.

Par contre, aucune observation de ce genre n'est faite pour NiSb₂O₄: or cet antimonite n'est le siège d'aucun effet magnétostrictif observable; en outre, les lois de variation M(T) sont très différentes dans ces deux antimonites (Tableau II). Ces différences peuvent être reliées à la nature même de ces transitions para-antiferromagnétiques. Des mesures de chaleurs spécifiques et de susceptibilité sont prévues et permettront de préciser cette question au moins dans le cas de NiSb₂O₄ dont la synthèse polycristalline est bien maîtrisée.

III. Discussion

Les modes magnétiques antérieurs sont donc confirmés (mode A pour MnSb₂O₄ et C pour NiSb₂O₄, conformément au Tableau I où nous reprenons les notations des auteurs (4). Les directions des moments qui sont colinéaires, sont précisées (voir Tableau II). Les modules des moments M diffèrent des résultats antérieurs dans le cas de MnSb₂O₄, composé obtenu ici par synthèse hydrothermale $(5,1 \pm 0,3 \mu_B \text{ à } T = 4,5$ K): en fait les mesures antérieures étaient moins précises (erreur estimée: $\pm 0.8 \ \mu_{\rm B}$). L'échantillon utilisé alors était moins bien cristallisé et contenait d'autres résidus de synthèse. L'état de cristallisation est ici meilleur car il s'agit de monocristaux broyés; les raies de diffraction sont d'ailleurs plus fines, les deux phases polycristallines MnO et MnSb₂O₄ étant bien séparées. Ces nouvelles valeurs correspondent bien au spin de l'ion Mn²⁺ (état *S*). Il en est de même pour l'ion Ni²⁺ dans NiSb₂O₄ (M =2,1 ± 0,3 μ_B à T = 2,5 K), dont le moment orbital est bloqué.

Notons que la température $T_{\rm N} = 60 \pm 5$ K définie ici pour MnSb₂O₄ correspond au maximum $T_{\rm m} = 70 \pm 10$ K du coefficient $\alpha_{\rm c}$ de dilatation thermique (2). Au-delà de $T_{\rm c} =$ 115 ± 15 K les effets magnétostrictifs deviendraient négligeables.

Intégrales d'échange

Connaissant les températures de Néel, on peut évaluer les relations entre intégrales d'échange J_1 et de superéchange J_2 en faisant appel à l'approximation du champ moléculaire (8):

$$\frac{3}{2}kT_{\rm N} = -S(S+1)[Z_1J_1+Z_2J_2].$$

Chaque ion Me²⁺ a ici deux plus proches voisins ($Z_1 = 2$) et chaque chaîne admet quatre chaînes voisines ($Z_2 = 4$). Il vient donc

[1] pour MnSb₂O₄, avec S = 2,5: $(2J_1^{\ddagger} + 4J_2^{\ddagger})/k_B = -10,2 \text{ K}$

[2] pour NiSb₂O₄, avec S = 1: $(2J_1^{\dagger} + 4J_2^{\ddagger})/k_B = -36,0$ K.

Remarquons ainsi que dans le cas de MnO (9 à 11) ($T_N = 118,5$ K) on a selon les auteurs (9, 10) et dans l'approximation du champ moléculaire, $J_1/k_B = -7,2$ K et J_2/k_B = -3,4 K, les interactions de superéchange Mn-O-Mn étant alors associées à des distances Mn-Mn de 4,5 Å, au lieu de 6,1 Å dans MnSb₂O₄. En supposant $J_2 \approx 0$ dans MnSb₂O₄, on obtient $J_1/k_B = -5,1$ K, valeur tout à fait comparable à celle obtenue pour MnO.

Par contre dans NiSb₂O₄, les valeurs des intégrales d'échange $J_1^{\dagger\dagger}$ et de superéchange J_2^{\dagger} sont plus grandes si l'on se réfère à la valeur classique $T_N = 523$ K caractéristique de NiO.

Magnétostriction

Dans MnSb₂O₄, les effets magnétostrictifs peuvent être interprétés à partir d'expressions simplifiées des énergies élastiques et magnétiques (10), rapportées à une unité formulaire MnSb₂O₄ de volume V

$$E_{\rm el} = \frac{1}{2} C_{33} \cdot \left(\frac{\Delta c}{c}\right)^2 \cdot V \quad \text{et}$$
$$\Delta E_m = 2.\bar{S}^2 \cdot j_1 \cdot J_1 \cdot \frac{\Delta c}{c}.$$

Ces expressions ont été obtenues par adaptation des formulations (9, 10) classiques, à des structures uniaxes quadratiques. On a supposé l'absence de tout effet magnétostrictif dans le plan (**ab**) avec $j_2 =$ 0; par définition j = dJ/J : dr/r, r est la distance Me-Me concernée. Le rapport $\Delta c/c$, défini antérieurement ((2) et Tableau I) caractérise, pour une température donnée, la magnétostriction le long de l'axe c; Δc mesure l'écart par rapport à une loi de Debye classique extrapolee (2). La constante d'élasticité C_{33} est reliée à la constante élastique s_{33} évaluée en (2) selon:

$$C_{33} = \left[s_{33} - \frac{2s_{13}}{s_{11} + s_{12}}\right]^{-1}.$$

Après minimisation de l'énergie totale E_{el} + ΔEm par rapport à $\Delta c/c$ il vient

$$\frac{\Delta c}{c} = -\frac{2S^2}{V} \cdot j_1 \cdot J_1 \cdot C_{33}^{-1} (j_1 < 0 \ J_1 < 0)$$

La mesure de $\Delta c/c$ (= -0,83 10⁻³) (Tableau 1) a été obtenue à partir de l'échantillon utilisé en (2) et pour lequel la température de Néel extrapolée à partir des deux seules mesures à 6 et 44 K est voisine de celle obtenue dans la présente étude (≈70 K). En utilisant toutefois les valeurs plus fiables de la présente étude S = 2,5 et $J_1/k = -5,1$ K, on obtient la valeur numérique suivante à T= 4,5 K (C_{33} = 1,2.10¹¹ Pa, V = 103 Å³): j_1 $= -12 \pm 4$. Cette valeur est inférieure à celle obtenue pour MnO (9, 10) dans l'approximation du champ moléculaire $(j_1 =$ -21); mais ces divers résultats dépendent fortement des constantes élastiques qui varient elles-mêmes avec la température.

Composé	Référence	Distorsion ^c $(a - b)/a_0$ (à 300 K)	Couleur	Moment $M(\mu_{\rm B})$
MnSb ₂ O ₄	(2)	5.10-3	Vert clair	3.8 ± 0.8^d $T = 6$ K
MnSb ₂ O ₄	а	1.10-3	Vert	$5,1 \pm 0,3^d$ $T = 4,5$ K
NiSb ₂ O₄	а	1.10-3	Jaune-vert	$2,1 \pm 0,3$ $T = 2,5$ K
ZnSb ₂ O ₄	(I)	5.10-3	Blanc-gris	Non magnétique
SnPb ₂ O₄	(3)	1.10-3	Jaune clair	Non magnétique
Pb ₃ O ₄	$(1)^b$	5 à 50.10 ⁻³	Orange/rouge	Non magnétique
	(12)			

TABLEAU III

^a Présente étude; cristaux broyés.

^b Les échantillons commerciaux peuvent présenter de très importantes distorsions; après recuit la distorsion diminue sans s'annuler totalement (10^{-3}) : Cf. la Réf. (12).

^c Le paramètre $(a - b)/a_0$ est calculé à partir des élargissements des raies (hkl) avec $h \neq k$. La morphologie de croissance cristalline (aiguilles) peut induire un effet de taille, observable sur les raies (hkl), les raies (00l) restant fines.

^d Compte-tenu des erreurs, la distorsion augmenterait lorsque le moment moyen M s'écarte de la valeur idéale c'est-à-dire lorsqu'il y a déficit d'ions Mn^{2+} ; la non-stoechiométrie se traduit par des déformations angulaires d'octaèdres (MnO_6) et des déplacements relatifs de chaînes d'octaèdres, ce qui explique la distorsion orthorhombique du réseau.

Influence de la synthèse

Contrairement aux autres isomorphes MeX_2O_4 , la synthèse polycristalline de $MnSb_2O_4$ présente de sérieuses difficultés; les deux types de synthèses utilisées mettent chacune en jeu soit la phase Mn_3O_4 soit la phase MnO, toutes deux très stables dans ces conditions d'élaboration. Il est connu que les réactions solide-solide impliquant des ions Mn^{2+} sont très lentes.

Les deux échantillons de MnSb₂O₄ étudiés présentent du fait de leur élaboration des distorsions du réseau quadratique différentes et reliées à l'état de cristallisation et à la stoechiométrie. Ces distorsions orthorhombiques continues (3) sont systématigues dans cette famille Me X_2O_4 et varient suivant les histoires thermiques: elles sont totalement découplées des effets magnétostrictifs. Le Tableau III compare les diverses distorsions que nous observons en moyenne dans divers isomorphes, magnétiques ou non. Par contre, si le défaut d'ions Mn²⁺ est l'une des causes de la distorsion du réseau, alors la mesure du moment magnétique moyen M permettrait aussi de caractériser la non stoechiométrie. Nous traiterons ultérieurement de cette éventualité.

Les techniques d'évolution structurale (rayons X, neutrons) sur poudres permettent ainsi une approche avantageuse de diverses propriétés anisotropes, ce que n'autorisent pas les méthodes macroscopiques directes du type susceptibilité magnétique ou capacité calorifique.

Remerciements

La synthèse hydrothermale des isomorphes Me X_2O_4 est actuellement entreprise au Centre Scientifique et Polytechnique de l'Université Paris Nord (Laboratoire de Chimie Physique: Professeur Pommier et Professeur Lucazeau). Elle a fait appel aux compétences de Françoise Genet que nous tenons à remercier tout particulièrement.

Références

- 1. J. R. GAVARRI, J. Solid State Chem. 43, 12 (1982).
- 2. J. R. GAVARRI, G. CALVARIN, ET B. CHARDON, J. Solid State Chem. 47, 132 (1983).
- 3. J. R. GAVARRI, J. P. VIGOUROUX, G. CALVARIN, ET A. W. HEWAT, J. Solid State Chem. 36, 81 (1981).
- 4. J. A. GONZALO, D. F. COX, ET G. SHIRANE, *Phys. Rev.* 147(2), 415 (1966).
- 5. E. KOYAMA, I. NAKAI, ET K. NAGASHIMA, Nippon Kagaku Kaishi 8(6), 793 (1979).
- H. M. RIETVELD, Acta Crystallogr. 22, 151 (1967);
 J. Appl. Crystallogr. 2, 65 (1969).
- 7. A. W. HEWAT ET I. BAILEY, Nucl. Instrum. Methods 137, 463 (1976).
- 8. L. NEEL, Ann. Phys. 8, 237 (1937).
- 9. D. BLOCH, P. CHARBIT, ET R. GEORGES, C.R. Acad. Sci. Paris Sér. B 266 (1968).
- D. BLOCH AND R. MAURY, Phys. Rev. B 7(11), 4883 (1973).
- M. E. LINES AND E. D. JONES, *Phys. i. Rev.* 139(4A), 1313 (1965).
- 12. P. GARNIER, G. CALVARIN, ET D. WEIGEL, J. Solid State Chem. 26, 357 (1978).